

HCM-003-001543 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

October - 2017

S-502 : Statistics

(Mathematical Statistics) (New Course)

Faculty Code: 003 Subject Code: 001543

	Subject Code: 001545	
Time : 2	$2\frac{1}{2}$ Hours] [Total Marks : 7	0
Instruct	tions: (1) Q.1 carries 20 marks. (2) Q. 2 and 3 carries 25 marks each. (3) Students can use their own scientific calculators	r.
1 Filli	ing the blanks and short questions : (Each 1 mark)	0
(1)	If two independent variates $X_1 \sim N\left(\mu_1, \sigma_1^2\right)$ and	
	$X_2 \sim N(\mu_2, \sigma_2^2)$ then $X_1 + X_2$ is dstributed as	
(2)	is a moment generating function of Standard Normal distribution.	
(3)	is a moment generating function of $\gamma(p)$.	
(4)	If x follows Gamma distribution with parameter p then $\mu_4 = k_4 + 3k_2^2$ is	
(5)	If two independent variates $X_1 \sim \gamma(n_1)$ and $X_2 \sim \gamma(n_2)$ then $\frac{X_1}{X_1 + X_2}$ is distributed as	
(6)	If $x_1, x_2, x_3,, x_n$ is independent log normal variates then its products also	
(7)	Measured of Kurtosis coefficient for Chi-square distribution are and	
(8)	Weibull distribution has application in	
(9)	If χ_1^2 and χ_2^2 are two independent Chi-square variates with d.f. n_1 and n_2 respectively, then the distribution of $\frac{\chi_1^2}{\chi_2^2}$ is	
TT COME OOG	^2	

- (10) If χ_1^2 and χ_2^2 are two independent Chi-square variates with d.f. n_1 and n_2 respectively, then the distribution of $\frac{\chi_1^2}{\chi_1^2 + \chi_2^2}$ is ______
- (11) t_n distribution tends to normal if _____
- (12) t distribution with 1 d.f. reduces to _____
- (13) If $X \sim N(0,1)$ and $Y \sim \chi_n^2$, the statistic $\frac{\sqrt{n}X}{\sqrt{Y}}$ is distributed as _____.
- (14) The marks *X* and *Y* secured by examinees in Statistics and Mathematics will follow ______ distribution.
- (15) Given a joint Bivariate Normal distribution of X, Y as $\text{BVN}\left(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho\right)$, the marginal distribution $f_x(X) = \underline{\hspace{1cm}}$
- (16) A measure of linear association of a varible say, X_1 with a number of other variables $X_2, X_3, X_4, ... X_k$ is known as _____
- (17) The range of multiple correlation coefficient R is
- (18) If X_1, X_2 and X_3 are three variables, the regression planes X_1 on $X_2, X_3; X_2$ on X_1, X_3 and X_3 on X_1, X_3 are coincident iff $r_{12}^2 + r_{13}^2 + r_{23}^2 2r_{12} r_{13} r_{23} =$
- (19) Partial correlation coefficients is a measure of association between two variables _____ the common effect of the rest of the variable.
- (20) _____ is a characteristic function of Binomial distribution.
- 2 (A) Write the answer any three: (Each 2 marks) 6
 - (1) Prove that $\sigma_{3.12}^2 = \frac{\sigma_3^2 \left(1 r_{12}^2 r_{23}^2 r_{13}^2 + 2r_{12} r_{23} r_{13}\right)}{\left(1 r_{12}^2\right)}$
 - (2) If $u = \frac{x-a}{h}$, a and h being constants then $\phi_u(t) = e^{(-iat/h)}\phi_x(t/h)$
 - (3) Define truncated distribution.

- (4) Usual notion of multiple correlation and multiple regression, prove that $\sum X_{1.23}x_2 = 0$
- (5) Prove that $b_{12.3} = \frac{b_{12} b_{13}b_{23}}{1 b_{13}b_{23}}$
- (6) In trivariate distribution it is found that $\eta_2 = 0.59$, $\eta_3 = 0.46$ and $r_{23} = 0.77$. Find (i) $\eta_{2.3}$ (ii) $R_{1.23}$
- (B) Write the answer any **three**: (Each 3 marks) 9
 - (1) Prove that $\mu_r = (-i)^r \left[\frac{d^r}{dt^r} \phi_u(t) \right]_{t=0}$; where $u = x \mu$
 - (2) Obtain MGF of Normal distribution.
 - (3) Define Exponential distribution and obtain its MGF. From MGF obtain its mean and variance.
 - (4) Define truncated Poisson distribution and also obtain its mean and variance.
 - (5) Usual notation of multiple correlation and multiple regression, prove that $b_{12} = \frac{b_{12.3} + b_{13.2} b_{32.1}}{1 b_{13.2} b_{31.2}}$
 - (6) Usual notation of multiple correlation and multiple regression, prove that $\sigma_{1.23}^2 = \sigma_1^2 \left(1 r_{12}^2\right) \left(1 r_{13.2}^2\right)$
- (C) Write the answer any two: (Each 5 marks) 10
 - (1) Obtain conditional distribution of *y* when *x* is given for Bi-variate distribution.
 - (2) Derive t-distribution.
 - (3) Derive χ^2 distribution and show that $3\beta_2 2\beta_1 + 6 = 0$.
 - (4) Obtain marginal distribution of x for Bi-variate distribution.
 - (5) Usual notation of multiple correlation and multiple regression, prove that $R_{1.23}^2 = \frac{r_{12}^2 + r_{13}^2 2r_{12} r_{23} r_{13}}{1 r_{23}^2}$
- 3 (A) Write the answer any three: (Each 2 marks) 6
 - (1) Define Beta-I and Beta-II distribution.
 - (2) Obtain characteristic function of Poisson distribution with parameter λ .

- (3) Define Weibul distribution.
- (4) Usual notion of multiple correlation and multiple regression, prove that $\sum X_{1.2}X_{3.12} = 0$
- (5) Define Convergence in Probability.
- (6) In trivariate distribution it is found that $\sigma_1 = \sigma_3 = 2.7$, $\sigma_2 = 2.4$, $r_{12} = 0.28$, $r_{23} = 0.49$, $r_{31} = 0.51$ find (i) $b_{32,1}$ (ii) $\sigma_{2,31}$
- (B) Write the answer any **three**: (Each 3 marks)
 - (1) Prove that $\mu'_r = (-i)^r \left[\frac{d^r}{dt^r} \phi_x(t) \right]_{t=0}$
 - (2) Obtain Probability density function for the characteristic function $\phi_x(t) = p(1-qe^{it})^{-1}$
 - (3) Obtain mean and variance of Uniform Distribution.
 - (4) Define truncated Binomial distribution and also obtain its mean and variance.
 - (5) Usual notation of multiple correlation and multiple regression, prove that if $r_{12} = r_{23} = r_{31} = r$ then $R_{1.23} = R_{2.31} = R_{3.12} = \frac{\sqrt{2} r}{\sqrt{1+r}}$
 - (6) Usual notation of multiple correlation and multiple regression, prove that $b_{12.3}b_{23.1}b_{31.2} = r_{12.3}r_{23.1}r_{31.2}$
- (C) Write the answer any two: (Each 5 marks) 10
 - (1) Obtain MGF of Gamma distribution with parameters α and p. Also show that $3\beta_1-2\beta_2+6=0$.
 - (2) Derive Normal distribution.
 - (3) Derive F-distribution.
 - (4) State and Prove that Chebichev's inequality.
 - (5) Usual notation of multiple correlation and multiple

regression, prove that
$$r_{12.3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)}}$$